Respuesta :

Answer:

(D) 9.893

Step-by-step explanation:

Given:

The equation to solve is given as:

[tex]3^{x-8}=8[/tex]

Since, the variable 'x' is in the exponent, we take log on both the sides.

Taking log to base 3 on both the sides, we get:

[tex]\log_3 (3^{x-8})=\log_3 (8)[/tex]

Using logarithmic property [tex]\log a^m=m\log a[/tex]

Therefore, the left hand side of the equation becomes;

[tex](x-8)\log_3 3=\log_3 8[/tex]

We know that, [tex]\log_a a=1[/tex]

[tex](x-8)\times 1=\log_3 8[/tex]

[tex]x-8=\log_3 8[/tex]

Now, using the change of base property of log [tex]\log_b y=\frac{\log y}{\log b}[/tex], we get:

[tex]x-8=\frac{\log 8}{\log 3}[/tex]

Adding 8 on both sides, we get:

[tex]x-8+8=\frac{\log 8}{\log 3}+8[/tex]

[tex]\log 8 = 0.903, \log 3 = 0.477[/tex]

[tex]x= \frac{0.903}{0.477}+8[/tex]

[tex]x=1.893+8=9.893[/tex]

Hence, option D is correct.

Answer:

9.893

Step-by-step explanation:

this is for flvs students I just took the test