contestada

The moon’s orbital speed around Earth is 3.680 × 10^3 km/h. Suppose the moon suffers a perfectly elastic collision with a comet whose mass is 50.0 percent that of the moon. (A partially inelastic collision would be a much more realistic event.) After the collision, the moon moves with a speed of−4.40 × 10^2 km/h, while the comet moves away from the moon at−5.740 × 10^3 km/h. What is the comet’s speed before the collision?

Respuesta :

Answer:

Speed of comet before collision is

[tex]v_{2_{i}}=-2.5\times10^{3}\quad km/h[/tex]

Explanation:

Correction: (As stated after collision comet moves away from moon so velocity of moon and moon and comet must be opposite in direction. as spped of moon after collision is −4.40 × 10^2km/h so that comet's must be 5.740 × 10^3km/h instead of -5.740 × 10^3km/h)

Solution:

[tex]mass \quad of\quad moon = m_{1}\\\\mass\quad of \quad comet = m_{2} = 0.5 m_{1}\\\\speed\quad of\quad moon\quad before\quad collision = v_{1_{i}}=3.680\times 10^3 km/h\\\\speed \quad of\quad moon\quad after\quad collision=v_{1_{f}} = -4.40 \times 10^2 km/h\\\\speed\quad of\quad comet\quad after\quad collision =v_{2_{f}} =5.740 \times 10^3 km/h[/tex]

Case is considered as partially inelastic collision, by conservation of momentum

[tex]m_{1}v_{1_{i}}+m_{2}v_{2_{i}}=m_{1}v_{1_{f}}+m_{2}v_{2_{f}}\\\\m_{1}v_{1_{i}}+0.5m_{1}v_{2_{i}}=m_{1}v_{1_{f}}+0.5m_{1}v_{2_{f}}\\\\v_{1_{i}}+0.5v_{2_{i}}=v_{1_{f}}+0.5v_{2_{f}}\\\\v_{2_{i}}=2(v_{1_{f}}+0.5v_{2_{f}}-v_{1_{i}})\\\\v_{2_{i}}=2(-4.40 \times 10^2+0.5(5.740 \times 10^3)-3.680 \times 10^3 )\\\\v_{2_{i}}=-2.5\times10^{3}\quad km/h[/tex]