Respuesta :
C. 20 m/s²
The centripetal acceleration of the moon is nearly equal to 20 m/s²
Explanation:
Given:
Mass of the moon : [tex]m = {1 \times 10^\(20}\ kg[/tex]
Gravitational force : [tex]F_G = 2 \times 10^\(21 \)N[/tex]
[tex]a_c = ?[/tex]
As the gravitational force provides the centripetal force necessary for the moon to perform circular motion around the planet;
Centripetal Force = Gravitational force
[tex]F_C = F_G[/tex] .....................(1)
[tex]Centripetal force \ F_C= m\times a_c \\ where\\ F_C = Centripetal force \\a_c= Centripetal \ acceleration \\ m=mass\ of \ the \ moon[/tex]
From (1)
[tex]F_C = F_G = m \times a_c\\\\a_c = \frac{F_G}{m} = \frac{2 \times 10^\(21}{1 \times 10^\(20}[/tex]
[tex]a_c = 2 \times 10 = 20 \ m/s^2[/tex]
Centripetal acceleration = 20 m/s²
Answer:
The centripetal acceleration of the moon is [tex]20\; \rm m/s^2[/tex].
Explanation:
Given information:
Mass of the moon is [tex]m=1\times10^{20} \texttt{ kg}[/tex]
The gravitational force exerted by the planet on the moon is, [tex]F=2\times10^{21}\rm \;N[/tex].
Now, the moon is revolving around the planet and the gravitational force will be responsible for centripetal force on the moon.
The centripetal force on the moon will be,
[tex]F_c=ma_c[/tex]
where [tex]a_c[/tex] is the centripetal acceleration of the moon.
So, the centripetal acceleration of the moon will be calculated as,
[tex]F=F_c\\2\times10^{21}=ma_c\\2\times10^{21}=1\times10^{20}\times a_c\\a_c=20\; \rm m/s^2[/tex]
Therefore, the centripetal acceleration of the moon is [tex]20\; \rm m/s^2[/tex].
For more details, refer the link:
https://brainly.com/question/14249440?referrer=searchResults