A 12 kg crate, resting on a horizontal surface, is pulled by a force that is applied at an angle of 30° above the horizontal. Find the minimum force needed to start the crate moving if the coefficient of static friction is 0.40.

Respuesta :

Answer:

70.6N

Explanation:

We are given that

Mass of crate=12 kg

[tex]\theta=30^{\circ}[/tex]

Coefficient of static friction=[tex\mu=[/tex]0.40

Horizontal component force is equal to friction force

[tex]Fcos\theta=f=\mu N[/tex]

Force along vertical direction

[tex]Fsin\theta+mg=N[/tex]..(2)

Using equation(2) in equation (1)

[tex]Fcos\theta=\mu(Fsin\theta+mg)[/tex]

[tex]Fcos\theta=\mu Fsin\theta+\mu mg[/tex]

[tex]\mu mg=Fcos\theta-\mu Fsin\theta=F(cos\theta-\mu sin\theta)[/tex]

[tex]F=\frac{\mu mg}{cos\theta-\mu sin\theta}[/tex]

Substitute the values then we get

[tex]F=\frac{2\times 0.40\times 9.8}{cos 30-0.40sin 30}[/tex]

[tex]F=70.6N[/tex]

Hence, the minimum force needed to start the crate moving=70.6N