Answer:
Radius of the convergence is R = [tex]\frac{1}{21}[/tex]
and,
The Interval of convergence is [tex]-\frac{1}{21}<x<\frac{1}{21}[/tex]
Step-by-step explanation:
Given function : Σ(21x)^k
Now,
Using the ratio test, we have
R = [tex]\lim_{n \to \infty} |\frac{21x^{k+1}}{21x^{k}}|[/tex]
or
R = [tex]\lim_{n \to \infty} |\frac{21x^{k}\times21x^{1}}{21x^{k}}|[/tex]
or
R = [tex]\lim_{n \to \infty} |21x^{1}|[/tex]
now,
for convergence R|x| < 1
Therefore,
[tex]\lim_{n \to \infty} |21x^{1}|[/tex] < 1
or
[tex]-\frac{1}{21}<x<\frac{1}{21}[/tex]
and,
Radius of the convergence is R = [tex]\frac{1}{21}[/tex]
and,
The Interval of convergence is [tex]-\frac{1}{21}<x<\frac{1}{21}[/tex]