Respuesta :

Answer:

x = ±5, x = ±4i

Step-by-step explanation:

-3x⁴ + 27x² + 1200 = 0

Divide both sides by -3.

x⁴ − 9x² − 400 = 0

Factor using AC method.

(x² − 25) (x² + 16) = 0

Set each factor to 0.

x² − 25 = 0, x² + 16 = 0

Solve for x.

x² = 25, x² = -16

x = ±5, x = ±4i

Following are the calculation to find the zeros of the equation:

Given:

[tex]\bold{-3x^4 + 27x^2 + 1200 = 0}[/tex]

To find:

zeros=?

Solution:

[tex]\bold{-3x^4 + 27x^2 + 1200 = 0}[/tex]

taking the '-3' from the above equation:

[tex]\bold{-3(x^4 - 9x^2 + 400) = 0}\\\\\bold{ x^4 - 9x^2 + 400 = 0}\\\\[/tex]

Using the AC method for Factor the above equation:

[tex](x^2 - 25) (x^2 + 16) = 0\\\\\therefore\\\\\to (a^2-b^2)=(a+b)(a-b)\\\\(x^2 - 5^2) (x^2 + 16) = 0\\\\(x - 5) (x+5) (x^2 + 16) = 0\\\\\because\\\\x-5=0 \ \ \ \ \ \ \ x+5=0 \ \ \ \ \ \ \ x^2+16=0\\\\x=5 \ \ \ \ \ \ \ x= -5 \ \ \ \ \ \ \ x^2= -16\\\\x=5 \ \ \ \ \ \ \ x= -5 \ \ \ \ \ \ \ x^2= -4^2\\\\x=5 \ \ \ \ \ \ \ x= -5 \ \ \ \ \ \ \ x= \pm 4i\\\\\\x= \pm 5 \ \ and \pm 4i[/tex]

Therefore, the final answer is "[tex]x= \pm 5 \ \ and \pm 4i[/tex]".

Learn more:

brainly.com/question/12679358