[tex]\frac{8}{9}[/tex] times [tex]\frac{3}{4}[/tex] in simplest form is [tex]\frac{2}{3}[/tex]
Solution:
Given that we have to simplify [tex]\frac{8}{9}[/tex] times [tex]\frac{3}{4}[/tex]
Here, "times" means "multiplication"
So we have to multiply [tex]\frac{8}{9}[/tex] and [tex]\frac{3}{4}[/tex]
[tex]\rightarrow \frac{8}{9} \times \frac{3}{4}[/tex]
In above expression,
8 can written as [tex]2 \times 2 \times 2[/tex]
9 can be written as [tex]3 \times 3[/tex]
4 can be written as [tex]2 \times 2[/tex]
Thus the expression becomes,
[tex]\rightarrow \frac{8}{9} \times \frac{3}{4} = \frac{2 \times 2 \times 2}{3 \times 3} \times \frac{3}{2 \times 2}[/tex]
Cancel the common factors in numerator and denominator
[tex]\frac{2 \times 2 \times 2}{3 \times 3} \times \frac{3}{2 \times 2} = \frac{2}{3}[/tex]
Thus [tex]\frac{8}{9}[/tex] times [tex]\frac{3}{4}[/tex] in simplest form is [tex]\frac{2}{3}[/tex]