Answer:
[tex]3.28403\times 10^{15}\ Hz[/tex]
Explanation:
[tex]n_1[/tex] = 1
[tex]n_2=\infty[/tex]
h = Planck's constant = [tex]6.626\times 10^{-34}\ m^2kg/s[/tex]
The energy is given by
[tex]E(n)=E_1(\dfrac{1}{n_1^2}-\dfrac{1}{n_2^2})\\\Rightarrow E(1)=13.6\ eV[/tex]
Energy is also given by
[tex]E=hf\\\Rightarrow f=\dfrac{E}{h}\\\Rightarrow f=\dfrac{13.6\times 1.6\times 10^{-19}}{6.626\times 10^{-34}}\\\Rightarrow f=3.28403\times 10^{15}\ Hz[/tex]
The frequency of light emitted would be [tex]3.28403\times 10^{15}\ Hz[/tex]