contestada

How to solve the equation by completing the square. (not sure what to do with the 2x at the end of the problem)
2x(squared)+6x-14=0

Respuesta :

Answer:

x = 8, or -11.

Step-by-step explanation:

Given:

the given expression.

[tex]2x^2+6x-14=0[/tex]

We need to solve the given expression by completing the square.

Solution:

Rewrite the expression as:

[tex]2x^2+6x-14=0[/tex]

Whole expression divided by 2.

[tex]x^2+3x-7=0[/tex]

Where:

[tex]b=3\ and\ c=-7[/tex]

Solve the given expression by the following formula.

[tex]x^2+bx+c=(x+\frac{b}{2})^2-(\frac{b}{2})^2+c=0[/tex] --------------(1)

Substitute b and c value in equation 1.

[tex](x+\frac{3}{2})^2-(\frac{3}{2})+(-7)=0[/tex]

[tex](x+\frac{3}{2})^2-\frac{3}{2}-7=0[/tex]

[tex](x+\frac{3}{2})^2+\frac{-3-7\times 2}{2}=0[/tex]

[tex](x+\frac{3}{2})^2+\frac{-3-14}{2}=0[/tex]

[tex](x+\frac{3}{2})^2+\frac{-19}{2}=0[/tex]

[tex](x+\frac{3}{2})^2-\frac{19}{2}=0[/tex]

Add [tex]\frac{19}{2}[/tex] both side of the equation.

[tex](x+\frac{3}{2})^2-\frac{19}{2}+\frac{19}{2}=\frac{19}{2}[/tex]

[tex](x+\frac{3}{2})^2=\frac{19}{2}[/tex]

Square root of the whole equation.

[tex]\sqrt{(x+\frac{3}{2})^2}=\sqrt{\frac{19}{2}}[/tex]

[tex]x+\frac{3}{2}=\pm\frac{19}{2}[/tex] --------(1)

For positive sign.

Add [tex]\frac{3}{2}[/tex] both side of the equation 1.

[tex]x+\frac{3}{2}-\frac{3}{2}=\frac{19}{2}-\frac{3}{2}[/tex]

[tex]x=\frac{19}{2}-\frac{3}{2}[/tex]

[tex]x=\frac{19-3}{2}[/tex]

[tex]x=\frac{16}{2}[/tex]

x = 8

Similarly for negative sign.

x = -11

Therefore, the value of x = 8, or -11.