Answer:
[tex](\frac{f}{g})(x)=\frac{f(x)}{g(x)}\\\\(\frac{f}{g})(7)=\frac{f(7)}{g(7)}[/tex]
Step-by-step explanation:
Division operation of function:[tex]If\ f(x)\ and\ g(x)\ are\ two\ functions\ then\ (\frac{f}{g})(x)=\frac{f(x)}{g(x)}[/tex]
[tex]Here\ we\ have\ to\ find\ (\frac{f}{g})(7)\\\\(\frac{f}{g})(7)=\frac{f(7)}{g(7)}[/tex]
Example:
[tex]Take\ f(x)=3x^2+1,\ g(x)=x+1\\\\(\frac{f}{g})(x)=\frac{f(x)}{g(x)}\\\\(\frac{f}{g})(x)=\frac{3x^2+1}{x+1}\\\\f(7)=3\times 7^2+1\\\\f(7)=3\times 49+1\\\\f(7)=148\\\\g(7)=7+1\\\\g(7)=8\\\\(\frac{f}{g})(7)=\frac{f(7)}{g(7)}\\\\(\frac{f}{g})(x)=\frac{148}{8}[/tex]