The Mean and Standard Deviation for random variable Z is 19 and 4.74.
Step-by-step explanation:
The Renowned Soccer player scores 30% goals of 50 attempts. Its random variable is X.
P(X) = 0.3.
n(X) = 50.
The Renowned gambler wins 25% and its random variable is Y.
P(Y) = 0.25 or [tex]\frac{1}{4}[/tex].
A random variable is Z is the total of random variables X and Y.
Thus the mean and Standard deviation of random variable Z,
mean (Z) = mean (X) + mean (Y).
SD (Z) = SD(X) + SD(Y).
Let us find the Mean and SD of X and Y.
For random variable X,
mean (X) = np.
=50(0.30).
mean (X) = 15.
SD (X) = [tex]\sqrt{np(1-p)}[/tex].
=[tex]\sqrt{(50)(0.3)(1-0.3)}[/tex].
=[tex]\sqrt{(50)(0.3)(0.7)}[/tex].
SD (X) = [tex]\sqrt{10.5}[/tex].
For random variable Y,
mean (Y) = [tex]\frac{1}{p}[/tex]. (probability at first time)
=[tex]\frac{1}{\frac{1}{4} }[/tex].
mean (Y) = 4.
SD (Y) = [tex]\sqrt{\frac{(1-p)}{p^2} }[/tex].
=[tex]\sqrt{\frac{(1-\frac{1}{4} )}{(\frac{1}{4}) ^2} }[/tex].
= [tex]\sqrt{\frac{\frac{3}{4} }{\frac{1}{16} } }[/tex].
=[tex]\sqrt{(\frac{3}{4} )(\frac{16}{1} )}[/tex].
SD (Y) =[tex]\sqrt{12}[/tex].
mean (Z) = 15+4.
mean (Z)= 19.
SD (Z) = [tex]\sqrt{12} +\sqrt{10.5}[/tex]
=[tex]\sqrt{22.5}[/tex].
SD (Z) =4.74.