Respuesta :

znk

Answer:

[tex]\large \boxed{\left(-3 - \sqrt{\frac{3}{2}},0\right) \text{ and } \left (-3+ \sqrt{\frac{3}{2}}, 0\right)}[/tex]

Step-by-step explanation:

Y = -2x² - 12x - 15

Use the quadratic formula:

[tex]x = \dfrac{-b\pm\sqrt{b^2-4ac}}{2a} = \dfrac{-b\pm\sqrt{D}}{2a}[/tex]

a = -2; b = -12; c = -15

1. Evaluate the discriminant D

D = b² - 4ac = (-12)² - 4(-2)(-15) = 144 - 120 = 24

2. Solve for x

[tex]\begin{array}{rcl}x & = & \dfrac{-b\pm\sqrt{D}}{2a}\\\\ & = & \dfrac{-(-12)\pm\sqrt{24}}{-4}\\\\ & = & \dfrac{12\pm2\sqrt{6}}{-4}\\\\ & = & -3 \pm\dfrac{\sqrt{6}}{2}\\\\ & = & -3 \pm\sqrt{\dfrac{6}{4}}\\\\ & = & -3 \pm\sqrt{\dfrac{3}{2}}\\\\\end{array}\\\text{The x-intercepts are at $\large \boxed{\mathbf{\left(-3 - \sqrt{\frac{3}{2}},0\right) \text{ and } \left (-3+ \sqrt{\frac{3}{2}}, 0\right)}}$}[/tex]

The figure below shows the intercepts in decimal form.

Ver imagen znk