Respuesta :

Answer:

The Value of [tex]a=\frac{15}{4}[/tex].

Step-by-step explanation:

We have Named the figure please find the attachment for your reference.

Given:

PR = y

QR = a

RS = b

PS = z

PQ = x

QS = 15

∠P = 90°

∠R = 90°

∠Q = 60°

∠S = 30°

We need to find the Value of 'a'.

Solution:

Now we know that:

In Δ PQS

∠P = 90°

∠S = 30°

Now we know that;

[tex]sin\ \theta = \frac{opposite\ side}{Hypotenuse}[/tex]

[tex]sin \ S= \frac{PQ}{QS}[/tex]

Substituting the given values we get;

[tex]sin\ 30\°=\frac{x}{15}[/tex]

Now we know that;

[tex]sin\ 30\° = \frac12[/tex]

So we can say that;

[tex]\frac{1}{2}=\frac{x}{15}\\\\x=\frac{15}{2}[/tex]

Now In Triangle PQR.

∠R = 90°

∠Q = 60°

So we can say that;

[tex]Cos \theta = \frac{adjacent \ Side}{Hypotenuse}\\[/tex]

[tex]Cos\ Q = \frac{QR}{PQ}[/tex]

Substituting the given values we get;

[tex]cos 60\°= \frac{a}{x}[/tex]

Now we know that;

[tex]cos 60\°= \frac12[/tex]

[tex]x=\frac{15}{2}[/tex]

So substituting the values we get;

[tex]\frac{1}{2}=\frac{a}{\frac{15}{2}}[/tex]

By Using Cross Multiplication we get;

[tex]a= \frac{1}{2}\times\frac{15}{2}\\\\a=\frac{15}{4}[/tex]

Hence The Value of [tex]a=\frac{15}{4}[/tex].

Ver imagen jitumahi76