Assume you need to design a hydronic system that can deliver 80,000 Btu/hr. What flow rate of water is required if the temperature drop of the distribution system is to be 10 °F? What flow rate is required if the temperature drop is to be 20 °F?

Respuesta :

Answer:

At 10°F change in temperature

Mass flowrate = 1.01 kg/s = 2.227 lbm/s

Volumetric flowrate = 1010 m³/s = 35667.8 ft³/s

At 20°F change in temperature

Mass flowrate = 0.505 kg/s = 1.113 lbm/s

Volumetric flowrate = 505 m³/s = 17833.9 ft³/s

Explanation:

80000 btu/hr = 23445.7 W

P = ṁc(ΔT)

ṁ = MASS flowrate

c = specific heat capacity of water = 4182 J/kg.K,

ΔT = change in temperature = 10°F

To convert, a change of 18°F is equal to a change of 10°C

A change of 10°F = 10×10/18 = 5.556°C = 5.556K

P = ṁc(ΔT)

23445.7 = ṁ(4182 × 5.556)

ṁ = 23445.7/(4182 × 5.556)

ṁ = 1.01 kg/s = 2.227 lbm/s

In volumetric flow rate, Q = density × mass flowrate = 1000 × 1.01 = 1010 m³/s = 35667.8 ft³/s

For a change of 20°F,

ΔT = change in temperature = 20°F

To convert, a change of 18°F is equal to a change of 10°C

A change of 20°F = 20×10/18 = 11.1111°C = 11.111K

P = ṁc(ΔT)

23445.7 = ṁ(4182 × 11.111)

ṁ = 23445.7/(4182 × 11.111)

ṁ = 0.505 kg/s = 1.113 lbm/s

In volumetric flow rate, Q = density × mass flowrate = 1000 × 0.505 = 505 m³/s = 17833.9 ft³/s

Hope this Helps!!!