Respuesta :

Option B:

25 degrees

Solution:

Given data in triangle PQR,

The side opposite to angle P is p.

The side opposite to angle Q is q.

The side opposite to angle R is r.

q = 36, r = 20, angle Q = 50°.

To find the measure of angle R:

Using law of sine,

[tex]$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}[/tex]

[tex]$\Rightarrow\frac{p}{\sin P}=\frac{q}{\sin Q}=\frac{r}{\sin R}[/tex]

Take only two sides.

[tex]$\Rightarrow\frac{q}{\sin Q}=\frac{r}{\sin R}[/tex]

Substitute the given values.

[tex]$\Rightarrow\frac{36}{\sin 50^\circ}=\frac{20}{\sin R}[/tex]

Do cross multiplication.

[tex]\Rightarrow36\times\sin R = \sin50^\circ\times20[/tex]

sin 50° = 0.766

[tex]\Rightarrow36\times\sin R = 0.766\times20[/tex]

[tex]\Rightarrow36\times\sin R = 15.32[/tex]

[tex]$\Rightarrow\sin R = \frac{15.32}{36}[/tex]

[tex]$\Rightarrow\sin R = 0.4255[/tex]

[tex]$\Rightarrow R = \sin^{-1}(0.4255)[/tex]

⇒ R = 25.18°

R = 25° (approximately)

Option B is the correct answer.

Hence the measure of angle R is 25 degrees.