What is the rate of increase for the function f(x) = One-third (RootIndex 3 StartRoot 24 EndRoot) Superscript 2 x?

Choices: 1/3

2RootIndex 3 StartRoot 3 EndRoot

4

4RootIndex 3 StartRoot 9 EndRoot

Respuesta :

Answer:

[tex]4\sqrt[3]{9}[/tex]

Step-by-step explanation:

we have the function

[tex]f(x)=\frac{1}{3}(\sqrt[3]{24})^{2x}[/tex]

Remember that

[tex]24=(2^3)(3)[/tex]

substitute

[tex]f(x)=\frac{1}{3}(\sqrt[3]{(2^3)(3)})^{2x}[/tex]

Applying property of exponents

[tex]\sqrt[n]{x^{m}}=x^{\frac{m}{n}}[/tex]

[tex](x^{m})^{n} =x^{m*n}[/tex]

so

[tex]f(x)=\frac{1}{3}(\sqrt[3]{(2^3)(3)})^{2x}=\frac{1}{3}[(2^3)(3)}]^{\frac{2}{3}x}=\frac{1}{3}[(2^2)3^\frac{2}{3}]^x=\frac{1}{3}(4\sqrt[3]{9})^x[/tex]

therefore

The rate of increase is

[tex]4\sqrt[3]{9}[/tex]

4RootIndex 3 StartRoot 9 EndRoot

Answer:

it is D

Step-by-step explanation: yes