Respuesta :
The length of line segment OM is 34 cm.
Step-by-step explanation:
- The diagonals of a parallelogram bisect each other (cuts equally into two halves).
- The line segment OM is a diagonal with an intersection point Q.
- The line segment OQ is equal in length as the line segment QM.
Step 1 :
⇒ length of OQ = length of QM
⇒ 2x + 3 = 3x -4
⇒ 3x-2x =4+3
⇒ x = 7
Step 2 :
Subsitute x = 7 in OQ and QM
⇒ length of OQ = 2x+3
⇒ 2(7) + 3 = 17 cm
⇒ length of QM = 3x-4
⇒ 3(7) - 4 = 17 cm
∴ Length of OM = length of OQ + length of QM
⇒ OM = 17+17 = 34 cm