Answer:
h=32.1 km
Explanation:
solution:
using newton law of gravitational attraction and newton second law:
[tex]W=\frac{Gmm_{E} }{r^{2} } \\a=\frac{Gm_{E}}{r^{2}} \\W=ma\\[/tex]
[tex]m_{E}= mass of earth[/tex]
r= distance between two masses
at sea level
a=g
[tex]r=R_{E}[/tex]
[tex]a=\frac{Gm_{E}}{r^{2}}[/tex].............................(1)
[tex]Gm_{E} =gR_{E}^2[/tex].........................(2)
by substituting (2) and (1) [tex]a=g\frac{R_{E}^2 }{r^{2} }[/tex] acceleration due to gravity at a distance r from the centre of the earth in terms of g (sea level)
so the weight of the object at a distance r from the centre of the earth (W=ma)
W=mg(Re^2/r^2)..........(3)
h the height above the surface of the earth: r=Re+h
putting the value of r in eq (3)
W=mg(Re/Re+h)^2
W=0.99 mg
solving for height h:
h=Re(1/√0.99)-(1))
h=32.1 km