Respuesta :

Answer:

17.25 cm

Step-by-step explanation:

We are given that

Perimeter of triangle ABC=27.6 cm

AB=9.6 cm

BC=6 cm

Triangle ABC is similar to triangle BCD

We have to find the perimeter of triangle BCD.

Triangle ABC is similar to triangle BCD

Let perimeter of triangle BCD=x

When two triangles are similar then

[tex]\frac{Perimeter\;of\;triangle}{Perimeter\;of\;another\;triangle}=\frac{Side\;of\;triangle}{side\;of\;another\;triangle}[/tex]

Using the formula

[tex]\frac{perimeter\;of\;triangle\;ABC}{perimeter\;of\;triangle BCD}=\frac{AB}{BC}[/tex]

Substitute the values

[tex]\frac{27.6}{x}=\frac{9.6}{6}[/tex]

[tex]x=\frac{27.6\times 6}{9.6}=17.25 cm[/tex]

Hence, the perimeter of triangle BCD=17.25 cm