Answer:
[tex] m= \frac{r_2 -r_1}{t_2 -t_1}= \frac{2000000-1000000}{14-4}=100000[/tex]
And then we can use for example the first point [tex] (t_1, r_1) = (4, 1000000)[/tex] to find the intercept:
[tex] 1000000= 100000*4 + b[/tex]
[tex]b=600000[/tex]
So then the linear model for this case should be:
[tex] r = 100000 t + 600000[/tex]
Step-by-step explanation:
For this case we want to find a linear model given by:
[tex] r =mt+b[/tex]
Where r = represent the number of readers , t= years after 2000
m = the slope for the model and b the intercept
For this case we can define the following points from the data given:
[tex] (t_1, r_1) = (4, 1000000)[/tex] 4 years after 2000
[tex] (t_2, r_2) = (14, 2000000)[/tex] 14 years after 2000
We can find the slope with the following formula:
[tex] m= \frac{r_2 -r_1}{t_2 -t_1}= \frac{2000000-1000000}{14-4}=100000[/tex]
And then we can use for example the first point [tex] (t_1, r_1) = (4, 1000000)[/tex] to find the intercept:
[tex] 1000000= 100000*4 + b[/tex]
[tex]b=600000[/tex]
So then the linear model for this case should be:
[tex] r = 100000 t + 600000[/tex]