Only one of three balls A, B, and C carries a net charge q. The balls are made from conducting material and are identical. One of the uncharged balls can become charged by touching it to the charged ball and then separating the two. This process of touching one ball to another and then separating the two balls can be repeated over and over again, with the result that the three balls can take on a variety of charges. Which one of the following distribution of charges could not possibly be achieved in this fashion, even if the process were repeated an infinite number of times?
Why the answer is qA = 1/2q, qB=3/8q, qC=1/4q. Explain please.

Respuesta :

Answer:

This is greater than the initial charge, which violates the principle that the charge cannot be created or destroyed, consequently this distribution is impossible to achieve

Explanation:

The metals distribute the charge on all surface when they touch the surface increases so that charge density decreases and when the charge is separated into smaller in each metal.

Let's apply this principle to our case.

One of the spheres is loaded with a charge q, when touching a ball its charge is reduced to 1 / 2q for each ball.

         qA = ½ q

         qB = ½ q

         qC = 0

The total charge is q

we make a second contact

If we touch the ball A again with the other sphere not charged C, the chare is distributed and when separated it is reduced by half

         qA = 1/2 (q / 2) = ¼ q

         qC = ¼ q

         qB = ½ q

At this point all spheres have a charge,

      qA = ¼ q

      qb = ½ q

      qC = ¼ q

The total charge is q

Now let's contact spheres B and one of the other two

       Q = ½ q + ¼ q = ¾ q

When splitting the charge

        qB = ½ ¾ q = 3/8 q

        qC = ½ ¾ q = 3/8 q

        qA = ¼ q

The total charge is q

Note that the total load is always equal to q

Now let's analyze the given configuration

Let's look for the total load

       Q = qA + QB + QC

       Q = ½ q + 3/8 q + ¼ q

        Q = 9/8 q

This is greater than the initial charge, which violates the principle that the charge cannot be created or destroyed, consequently this distribution is impossible to achieve