In a first order decomposition, how long does it take (in seconds) for 40% of the compound to decompose given that k is 0.0284 sec-1 (give answer to 1 decimal place)?

Respuesta :

Answer:

t = 18 s

Explanation:

given,

decomposition of the material = 40 %

Remaining percentage of the material = 100 -40 = 60 %

k = 0.0284 sec⁻¹

Using equation of first order of decomposition

 [tex]\dfrac{[A]}{[A_0]}=e^{-kt}[/tex]

A is the material left after decomposition

A_0 is the initial size of material before decomposition.

 [tex]\dfrac{0.6[A_0]}{[A_0]}=e^{-kt}[/tex]

 [tex]0.6=e^{-kt}[/tex]

 [tex] -kt = ln (0.6)[/tex]

 [tex] -0.0284 t = -0.5108[/tex]

 [tex]t = \dfrac{0.5108}{0.0284}[/tex]

      t = 18 s

Time taken to decompose 40% is equal to 18 s.