Consider the equation:
CHCl3(g)+Cl2(g) ------> CCl4(g)+HCl(g)
The initial rate of the reaction is measured at several different concentrations of the reactants with the following results: [CHCl3](M) [Cl2](M) Initial rate (M/s)
0.010 0.010 0.0035
0.020 0.010 0.0069
0.020 0.020 0.0098
0.040 0.040 0.027
1. From the data, choose the correct rate law for the reaction.
Rate = k[CHCl3][Cl2]^2Rate = k[CHCl3]^2[Cl2]^1/2Rate = k[CHCl3][Cl2]Rate = k[CHCl3][Cl2]^1/2
2. the rate constant (k) for the reaction.Express your answer using three significant figures.

Respuesta :

Answer:1. [tex]Rate=k[CHCl_3]^1[Cl_2]^\frac{1}{2}[/tex]

2. The rate constant (k) for the reaction is [tex]3.50M^\frac{-1}{2}s^{-1}[/tex]

Explanation:

Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.

[tex]rate=k[CHCl_3]^x[Cl_2]^y[/tex]

k= rate constant

x = order with respect to [tex]CHCl_3[/tex]

y = order with respect to [tex]Cl_2[/tex]

n = x+y= Total order

1. a) From trial 1: [tex]0.0035=k[0.010]^x[0.010]^y[/tex]  (1)

From trial 2: [tex]0.0069=k[0.020]^x[0.010]^y[/tex]   (2)

Dividing 2 by 1 :[tex]\frac{0.0069}{0.035}=\frac{k[0.020]^x[0.010]^y}{k[0.010]^x[0.010]^y}[/tex]

[tex]2=2^x,2^1=2^x[/tex] therefore x=1.

b)  From trial 2: [tex]0.0069=k[0.020]^x[0.010]^y[/tex]   (3)

From trial 3: [tex]0.0098=k[0.020]^x[0.020]^y[/tex]   (4)

Dividing 4 by 3:[tex]\frac{0.0098}{0.0069}=\frac{k[0.020]^x[0.020]^y}{k[0.020]^x[0.010]^y}[/tex]

[tex]1.4=2^y,2^{\frac{1}{2}}=2^y[/tex] therefore [tex]y=\frac{1}{2}[/tex]

[tex]rate=k[CHCl_3]^1[Cl_2]^\frac{1}{2}[/tex]

2. to find rate constant using trial 1:

[tex]0.0035=k[0.010]^1[0.010]^\frac{1}{2}[/tex]  

[tex]k=3.50M^\frac{-1}{2}s^{-1}[/tex]