Respuesta :
Answer:
Fₓ = k q₁² [1 / D₁² + 0.919 / (D₁² + D₂²)]
Fₓ = 2.04 10⁻³ N
Explanation:
For this exercise we will use Coulomb's law and Newton's second law
F = F₁₂ + F₁₃ + F₁₄
The values given are
q₁ = q₄ = 75 10⁻⁹ C
q₂ = q₃ = -75 10⁻⁹ C
D₁ = 0.21 m X axis
D₂ = 0.09 m Y axis
Let's look for each force
F₁₂ = k q₁q₂ / r₁₂²
F₁₂ = - k q₁² / D₁²
F₁₃ = k q₁ q₃ / (D₁² + d₂²)
F₁₃ = - k q₁² / (D₁² + D₂²)
As we are asked for the component on the x-axis of the force, let's decompose using trigonometry
Tan θ = D₂ / D₁
θ = tan⁻¹ D₂ / D₁
θ = tan⁻¹ 0.09 / 0.21
θ = 23.20º
sin 23.20 = [tex]F_{13y}[/tex] / F13
cos 23.20 = F₁₃ₓ / F13
F_{13y} = F13 sin23.20
F₁₃ₓ = F13 cos 23.20
F₁₃ₓ = F13 0.919
The force F₁₄ is in the direction y therefore does not contribute to the horizontal force
Fₓ = F₁₂ + F₁₃ₓ
Fₓ = k q₁² / D₁² + k q₁² / (D₁² + D₂²) cos 23.20º
Fₓ = k q₁² [1 / D₁² + 0.919 / (D₁² + D₂²)]
Let's calculate
Fₓ = 9 10⁹ (75 10⁻⁹)² [1 / 0.21² + 0.919 /(0.21² + 0.09²)]
Fₓ = 5.0625 10⁻⁵ [22.676 + 17.605]
Fₓ = 2.04 10⁻³ N
In the direction of the positive side of the x axis since the forces are attractive