A block of an unknown metal has a mass of 227.8 kg and a volume of 0.1189 cubic meters. If the object were a sphere, what would be its radius? (The value for pi ≈ 3.14159)

Respuesta :

Explanation:

The given data is as follows.

          mass = 227.8 kg,      volume = 0.1189 [tex]m^{3}[/tex]

It is known that formula for volume of a sphere is [tex]\frac{4}{3} \pi r^{3}[/tex] and density is as follows.

             Density = [tex]\frac{mass}{volume}[/tex] ........ (1)

                          = [tex]\frac{227.8 kg}{0.1189 m^{3}}[/tex]

                          = 1915.895 [tex]kg/m^{3}[/tex]

Hence, putting the given values into equation (1) as follows.

            Density = [tex]\frac{mass}{volume}[/tex]

   1915.895 [tex]kg/m^{3}[/tex] = [tex]\frac{227.8 kg}{\frac{4}{3} \pi r^{3}}[/tex]        

          [tex]8021.213 r^{3}[/tex] = 227.8

                      r = 0.305 [tex]m^{3}[/tex]

Thus, we can conclude that radius of the sphere is 0.305 [tex]m^{3}[/tex].