Apply the distributive property to create an equivalent expression. 12(10x+20y+10z)=\dfrac12(10x + 20y +10z) =21​(10x+20y+10z)=start fraction, 1, divided by, 2, end fraction, left parenthesis, 10, x, plus, 20, y, plus, 10, z, right parenthesis, equals

Respuesta :

Answer:

[tex]5x+10y+5z[/tex]

Step-by-step explanation:

We are given that an expression

[tex]\frac{1}{2}(10x+20y+10z)[/tex]

We have to find the equivalent expression by using distributive property.

We know that

Distributive property for three integers a,b and c

[tex]a\cdot (b+c)=a\cdot b+a\cdot c[/tex]

Suppose a=10x and b=20y+10z

Using the formula

[tex]\frac{1}{2}(10x)+\frac{1}{2}(20y+10z)[/tex]

[tex]5x+\frac{1}{2}(20y+10z)[/tex]

Again apply distributive property

[tex]5x+\frac{1}{2}(20y)+\frac{1}{2}(10z)[/tex]

[tex]5x+10y+5z[/tex]

This is required expression.

Answer:

5r+10y+5z

Step-by-step explanation:

Follow me

Peace out!