Respuesta :

Answer:

The area of the triangle is  [tex]\sqrt{3}[/tex]

Step-by-step explanation:

Given:

Coordinates D (0, 0), E (1, 1)

Angle  ∠DEF = 60°

△DEF is a Right triangle

To Find:

The area of the triangle

Solution:

The area of the triangle is  = [tex]\frac{1}{2}(base \times height)[/tex]

Here the base is Distance between D and E

calculation the distance using the distance formula, we get

DE  = [tex]\sqrt{(0-1)^2 + (0-1)^2}[/tex]

DE =[tex]\sqrt{(-1) ^2 + (-1)^2[/tex]

DE = [tex]\sqrt{1+1}[/tex]

DE = [tex]\sqrt{2}[/tex]

Base = [tex]\sqrt{2}[/tex]

Height is DF

DF =[tex]tan(60^{\circ}) \times DE[/tex]

DF = [tex]\sqrt{3} \times DE[/tex]

DF = [tex]\sqrt{3} \times\sqrt{2}[/tex]

Now, the area of the triangle is

= [tex]\frac{1}{2}({\sqrt{2})(\sqrt{3} \times \sqrt{2})[/tex]

=[tex]\frac{1}{2}({\sqrt{2})(\sqrt{3} \sqrt{2})[/tex]

=[tex]\frac{1}{2}(2\sqrt{3} )[/tex]

=[tex]\sqrt{3}[/tex]

Ver imagen nandhini123