Angle A is in standard position and terminates in quadrant IV. If sec(A)=4/3, complete the steps to find cot(A).

Use the identity_____ to find the value of _____(A).

Thank you in advance !!
Cheers, Z


Respuesta :

Answer:

Part A) Use the identity [tex]tan^2(A)+1=sec^2(A)[/tex]

Part B) [tex]cot(A)=-\frac{3\sqrt{7}}{7}[/tex]

Step-by-step explanation:

we know that

[tex]tan^2(A)+1=sec^2(A)[/tex] ----> by trigonometric identity

we have

[tex]sec(A)=\frac{4}{3}[/tex]

substitute in the expression above

[tex]tan^2(A)+1=(\frac{4}{3})^2[/tex]

solve for tan(A)

[tex]tan^2(A)+1=\frac{16}{9}[/tex]

[tex]tan^2(A)=\frac{16}{9}-1[/tex]

[tex]tan^2(A)=\frac{7}{9}[/tex]

square root both sides

[tex]tan(A)=\pm\frac{\sqrt{7}}{3}[/tex]

Remember that Angle A terminates in quadrant IV

so

The value of tan(A) is negative

[tex]tan(A)=-\frac{\sqrt{7}}{3}[/tex]

Find the value of cot(A)

we know that

[tex]cot(A)=\frac{1}{tan(A)}[/tex] ----> is the reciprocal

therefore

[tex]cot(A)=-\frac{3}{\sqrt{7}}[/tex]

simplify

[tex]cot(A)=-\frac{3\sqrt{7}}{7}[/tex]

Answer:

First answer is A.

Second answer is: tan.

Third is answer  C. sqrt7/3

Fourth answer is A. -3sqrt7/7

Step-by-step explanation: