Respuesta :

Average rate of change of the function [tex]=\frac{75}{2}[/tex]

Solution:

Given function: [tex]f(x)=5(2)^{x}[/tex] from x = 1 to x = 5

Substitute x = 1 and x = 5 in f(x).

[tex]f(1)=5(2)^{1}=10[/tex]

[tex]f(5)=5(2)^{5}=160[/tex]

Let us find the average rate of change of the function.

Average rate of change

                      [tex]$=\frac{f(b)-f(a)}{b-a}[/tex]

Here a = 1 and b = 5.

                     [tex]$=\frac{f(5)-f(1)}{5-1}[/tex]

Substitute f(5) and f(1).

                     [tex]$=\frac{160-10}{4}[/tex]

                     [tex]$=\frac{150}{4}[/tex]

                     [tex]$=\frac{75}{2}[/tex]

Average rate of change of the function [tex]=\frac{75}{2}[/tex]