Respuesta :

The value of x is 8.

Solution:

Given ΔVDG [tex]\sim[/tex] ΔVNQ

ND = 15, DG = 60, NQ = 48, NV = x + 4

To find the value of x:

If two triangles are similar then their corresponding sides are in the same ratio.

[tex]$\Rightarrow \frac{DG}{NQ} =\frac{DN}{NV}[/tex]

[tex]$\Rightarrow \frac{60}{48} =\frac{15}{x+4}[/tex]

Do cross multiplication.

[tex]$\Rightarrow {60} \times(x+4)=15 \times 48[/tex]

[tex]$\Rightarrow {60} \times(x+4)=720[/tex]

Divide by 60 on both sides of the equation.

[tex]$\Rightarrow x+4=12[/tex]

Subtract 4 from both sides of the equation.

[tex]$\Rightarrow x=8[/tex]

Hence the value of x is 8.