Respuesta :

Following are the response to the given question:

  • Rewrite as a system of equations: [tex]x=\sqrt{75} \ or\ x=- \sqrt{75}[/tex]
  • Factor its radicand then recast it in exponential distribution: [tex]x=\sqrt{5^2 \times 3}[/tex]
  • Rewrite the formula as:[tex]\sqrt[n]{ab}= \sqrt[n]{a} \cdot \sqrt[n]{b}:x= \sqrt{5^2} \times \sqrt{3}[/tex]
  • Calculating the radical expression: [tex]x \sqrt[5]{3}[/tex]
  • Factor and rewrite this radicand into exponential function:  [tex]x= - \sqrt{5^2 \times 3}[/tex]
  • Rewrite this formula as follows: [tex]\sqrt[n]{ab}= \sqrt[n]{a} \cdot \sqrt[n]{b}:x= -\sqrt{5^2} \times \sqrt{3}[/tex]
  • Reduce this radical expression to :[tex]x=-5 \sqrt{3}[/tex]
  • Determine the union of the following solutions: [tex]x=5\sqrt{3} \ \ or\ \ x=-5\sqrt{3}[/tex]

Therefore, the final answer "[tex]\bold{x=5\sqrt{3}\ or \ x=-5\sqrt{3}}[/tex]".

Learn more:

brainly.com/question/17175348