Respuesta :
Answer:
[tex]A=15\pi\ units^2[/tex]
Step-by-step explanation:
The picture of the question in the attached figure
we know that
It is given that the diameter of 5 circles making up the archery is 2,4,6,8, and 10.
To determine the total red area, we use the formula for area of the circle
[tex]A=\pi r^{2}[/tex]
step 1
Find the Area of the 1st red circle
[tex]r=2/2=1\ unit[/tex] ---> the radius is half the diameter
[tex]A_1=\pi (1)^{2}=\pi\ units^2[/tex]
step 2
Find the Area of the 2nd white circle
[tex]r=4/2=2\ units[/tex] ---> the radius is half the diameter
[tex]A_2=\pi (2)^{2}=4\pi\ units^2[/tex]
step 3
Find the Area of the 3rd red circle
[tex]r=6/2=3\ units[/tex] ---> the radius is half the diameter
[tex]A_3=\pi (3)^{2}=9\pi\ units^2[/tex]
step 4
Find the Area of the 4th white circle
[tex]r=8/2=4\ units[/tex] ---> the radius is half the diameter
[tex]A_4=\pi (4)^{2}=16\pi\ units^2[/tex]
step 5
Find the Area of the 5th red circle
[tex]r=10/2=5\ units[/tex] ---> the radius is half the diameter
[tex]A_5=\pi (5)^{2}=25\pi\ units^2[/tex]
The total red area is given by
[tex]A=A_5-A_4+A_3-A_2+A_1[/tex]
substitute
[tex]A=25\pi-16\pi+9\pi-4\pi+\pi[/tex]
[tex]A=15\pi\ units^2[/tex]
