Respuesta :

Answer:

1A) Degree: 3

1B)  4 terms

1C) [tex]7x^3-5x^2-4x+10[/tex]

2A) [tex]3m-5n+1[/tex]

2B) [tex]-2b^3-3b+3[/tex]

Step-by-step explanation:

The given polynomial is [tex]-4x+7x^3-5x^2+10[/tex]

Let us rewrite the polynomial in decreasing powers of x.

This gives us the expression;

[tex]7x^3-5x^2-4x+10[/tex]-----> This is called the standard form.

So let us answer the question:

A) The degree is the exponent of the first term when the polynomial is written in standard form.

Degree: 3

B) The terms are separated by + or - signs.

Number of terms: 4

C) Standard form: [tex]7x^3-5x^2-4x+10[/tex]

2A) The given expression is [tex](7m-2n)+(-3n-4m+1)[/tex]

We expand using the distributive property to get:

[tex]7m-2n-3n-4m+1[/tex]

We regroup the terms to get:

[tex]7m-4m-2n-3n+1[/tex]

We simplify to obtain:

[tex]3m-5n+1[/tex]

2B) The given expression is  [tex](b^3-2b+4)-(3b^3+b-1)[/tex]

[tex]b^3-2b+4-3b^3-b+1[/tex]

Regroup the terms to get:

[tex]b^3-3b^3-2b-b+4-1[/tex]

We simplify to get:

[tex]-2b^3-3b+3[/tex]