contestada

Bone has a Young’s modulus of about 1.8 × 1010 Pa . Under compression, it can withstand a stress of about 1.62 × 108 Pa before breaking. Assume that a femur (thigh bone) is 0.45 m long, and calculate the amount of compression this bone can withstand before breaking. Answer in units of mm.

Respuesta :

Answer:

Explanation:

Given

Young's modulus [tex]E=1.8\times 10^{10}\ Pa[/tex]

It can withstand a stress of [tex]\sigma =1.62\times 10^8\ Pa[/tex]

Length of bone [tex]L=0.45\ m[/tex]

We know

young's modulus[tex](E)=\frac{stress}{strain}[/tex]

[tex]strain(\epsilon )=\frac{stress}{E}[/tex]

[tex]\epsilon =\frac{1.62\times 10^8}{1.8\times 10^{10}}[/tex]

[tex]\epsilon =0.009[/tex]

and [tex]strain=\frac{change\ in\ length}{Total\ length}[/tex]

[tex]0.009=\frac{\Delta L}{0.45}[/tex]

[tex]\Delta L=4.05\times 10^{-3}\ m[/tex]

[tex]\Delta L=4.05\ mm[/tex]

so bone suffers a compression of 4.05 mm

The amount of compression this bone can withstand before breaking - 0.0405 mm.

The Young's modulus

It is a property of the material that expresses how easily stretch and deform and is defined as the ratio of tensile stress (σ) to tensile strain (ε).

Youngs modulus Y of a material is given Y = [tex]\frac{FL}{ADL}[/tex]

where A = area

DL = change of length

L = original length

F = force

Solution:

here we apply the given values

DL = [tex]\frac{P \times L}{Y}[/tex]

= [tex]\frac{1.62\times 10^8 \times 0.45}{(1.8\times10^{10} }[/tex]

= 0.00405 cm

or = 0.0405 mm

Learn more about Youngs modulus:

https://brainly.com/question/16108855