Respuesta :
Answer:
Explanation:
Given
Young's modulus [tex]E=1.8\times 10^{10}\ Pa[/tex]
It can withstand a stress of [tex]\sigma =1.62\times 10^8\ Pa[/tex]
Length of bone [tex]L=0.45\ m[/tex]
We know
young's modulus[tex](E)=\frac{stress}{strain}[/tex]
[tex]strain(\epsilon )=\frac{stress}{E}[/tex]
[tex]\epsilon =\frac{1.62\times 10^8}{1.8\times 10^{10}}[/tex]
[tex]\epsilon =0.009[/tex]
and [tex]strain=\frac{change\ in\ length}{Total\ length}[/tex]
[tex]0.009=\frac{\Delta L}{0.45}[/tex]
[tex]\Delta L=4.05\times 10^{-3}\ m[/tex]
[tex]\Delta L=4.05\ mm[/tex]
so bone suffers a compression of 4.05 mm
The amount of compression this bone can withstand before breaking - 0.0405 mm.
The Young's modulus
It is a property of the material that expresses how easily stretch and deform and is defined as the ratio of tensile stress (σ) to tensile strain (ε).
Youngs modulus Y of a material is given Y = [tex]\frac{FL}{ADL}[/tex]
where A = area
DL = change of length
L = original length
F = force
Solution:
here we apply the given values
DL = [tex]\frac{P \times L}{Y}[/tex]
= [tex]\frac{1.62\times 10^8 \times 0.45}{(1.8\times10^{10} }[/tex]
= 0.00405 cm
or = 0.0405 mm
Learn more about Youngs modulus:
https://brainly.com/question/16108855