Respuesta :
Answer:
59.503987 seconds
Explanation:
b = Proportionality constant = 50 Ns/m
g = Acceleration due to gravity = 9.81 m/s²
m = Mass of object = 700 kg
We have the equation of velocity
[tex]v(t)=\dfrac{mg}{b}+\left(V_0-\dfrac{mg}{b}\right)e^{\dfrac{bt}{m}}[/tex]
The equation of motion
[tex]x(t)=\dfrac{mg}{b}+\dfrac{m}{b}\left(V_0-\dfrac{mg}{b}\right)(1-e^{\dfrac{bt}{m}})[/tex]
[tex]x(t)=\dfrac{700\times 9.81}{50}+\dfrac{9.81}{50}\left(0-\dfrac{700\times 9.81}{50}\right)(1-e^{\dfrac{50t}{700}})[/tex]
when x(t)=2000
[tex]2000=\dfrac{700\times 9.81}{50}+\dfrac{9.81}{50}\left(0-\dfrac{700\times 9.81}{50}\right)(1-e^{\dfrac{50t}{700}})\\\Rightarrow 2000\times \:50=\frac{700\times \:9.81}{50}\times \:50+\frac{9.81}{50}\left(0-\frac{700\times \:9.81}{50}\right)\left(1-e^{\frac{50t}{700}}\right)\times \:50\\\Rightarrow 6867-\frac{67365.27}{50}\left(1-e^{\frac{50t}{700}}\right)=100000\\\Rightarrow 50\left(-\frac{67365.27}{50}\left(1-e^{\frac{50t}{700}}\right)\right)=93133\times \:50\\\Rightarrow \frac{-67365.27\left(1-e^{\frac{50t}{700}}\right)}{-67365.27}=\frac{4656650}{-67365.27}\\\Rightarrow 1-e^{\frac{50t}{700}}=-69.12538\dots\\\Rightarrow -e^{\frac{50t}{700}}=-70.12538\dots\\\Rightarrow t=14\ln \left(70.12538\dots \right)\\\Rightarrow t=59.50398\ s[/tex]
The time taken is 59.503987 seconds