Respuesta :

Option A: [tex]\sqrt{75}[/tex]

Option C: [tex]\sqrt{15} \cdot \sqrt{5}[/tex]

Option F: [tex]\sqrt{25} \cdot \sqrt{3}[/tex]

Solution:

Given expression is [tex]5 \sqrt{3}[/tex].

Option A: [tex]\sqrt{75}[/tex]

[tex]\sqrt{75}=\sqrt{25\times3}[/tex]

       [tex]=\sqrt{5^2\times3}[/tex]

       [tex]=5\sqrt{3}[/tex]

Hence [tex]\sqrt{75}[/tex] is equivalent expression of [tex]5 \sqrt{3}[/tex].

Option B: [tex]\sqrt{45}[/tex]

[tex]\sqrt{45}=\sqrt{9\times5}[/tex]

       [tex]=\sqrt{3^2\times5}[/tex]

       [tex]=3\sqrt{5}[/tex]

Hence [tex]\sqrt{45}[/tex] is not equivalent expression of [tex]5 \sqrt{3}[/tex].

Option C: [tex]\sqrt{15} \cdot \sqrt{5}[/tex]

[tex]\sqrt{15} \cdot \sqrt{5}=\sqrt{15\times5}[/tex]

              [tex]=\sqrt{75}[/tex]

              [tex]=5\sqrt{3}[/tex]    (proved in option A)

Hence [tex]\sqrt{15} \cdot \sqrt{5}[/tex] is equivalent expression of [tex]5 \sqrt{3}[/tex].

Option D: [tex]\sqrt{3} \cdot \sqrt{5}[/tex]

[tex]\sqrt{3} \cdot \sqrt{5}=\sqrt{3\times5}[/tex]

            [tex]=\sqrt{15}[/tex]

Hence [tex]\sqrt{3} \cdot \sqrt{5}[/tex] is not equivalent expression of [tex]5 \sqrt{3}[/tex].

Option E: 75

75 is a whole number.

Hence 75 is not equivalent expression of [tex]5 \sqrt{3}[/tex].

Option F: [tex]\sqrt{25} \cdot \sqrt{3}[/tex]

[tex]\sqrt{25} \cdot \sqrt{3}=\sqrt{25\times3}[/tex]

              [tex]=\sqrt{75}[/tex]

              [tex]=5\sqrt{3}[/tex]    (proved in option A)

Hence [tex]\sqrt{25} \cdot \sqrt{3}[/tex] is equivalent expression of [tex]5 \sqrt{3}[/tex].

Therefore, [tex]\sqrt{75},\ \ \sqrt{15} \cdot \sqrt{5}, \ \ \sqrt{25} \cdot \sqrt{3}[/tex] are all equivalent expressions of [tex]5 \sqrt{3}[/tex].

Answer: √75, √25 • √3, √15 • √5

Step-by-step explanation: