Respuesta :
The value of b is -6.
Explanation:
The expression is [tex]\left(y^{b}\right)^{4}=\frac{1}{y^{24}}[/tex]
To determine the value of b, we shall solve the expression.
Applying exponent rule, [tex]\left(a^{b}\right)^{c}=a^{b c}[/tex], we get,
[tex]y^{4b}=\frac{1}{y^{24}}[/tex]
Applying exponent rule, [tex]\frac{1}{a^{b}}=a^{-b}[/tex], we have,
[tex]y^{4b}=y^{-24}[/tex]
The expression is of the form, [tex]a^{f(x)}=a^{g(x)}[/tex] then [tex]f(x)=g(x)[/tex]
Applying this rule, we get,
[tex]4b=-24[/tex]
Dividing both sides by 4, we have,
[tex]b=-6[/tex]
Hence, the value of b is -6.
Answer:
b
Step-by-step explanation:
did it on edge got it right