contestada

A river 500 ft wide flows with a speed of 8 ft/s with respect to the earth. A woman swims with a speed of 4 ft/s with respect to the water.
1) If the woman heads directly across the river, how far downstream is she swept when she reaches the opposite bank?
2) If she wants to be swept a smaller distance downstream, she heads a bit upstream. Suppose she orients her body in the water at an angle of 37° upstream (where 0° means heading straight accross, how far downstream is she swept before reaching the opposite bank?
3) For the conditions, how long does it take for her to reach the opposite bank?

Respuesta :

Answer:

1) [tex]\Delta s=1000\ ft[/tex]

2)  [tex]\Delta s'=998.11\ ft.s^{-1}[/tex]

3) [tex]t\approx125\ s[/tex]

[tex]t'\approx463.733\ s[/tex]

Explanation:

Given:

width of river, [tex]w=500\ ft[/tex]

speed of stream with respect to the ground, [tex]v_s=8\ ft.s^{-1}[/tex]

speed of the swimmer with respect to water, [tex]v=4\ ft.s^{-1}[/tex]

Now the resultant of the two velocities perpendicular to each other:

[tex]v_r=\sqrt{v^2+v_s^2}[/tex]

[tex]v_r=\sqrt{4^2+8^2}[/tex]

[tex]v_r=8.9442\ ft.s^{-1}[/tex]

Now the angle of the resultant velocity form the vertical:

[tex]\tan\beta=\frac{v_s}{v}[/tex]

[tex]\tan\beta=\frac{8}{4}[/tex]

[tex]\beta=63.43^{\circ}[/tex]

  • Now the distance swam by the swimmer in this direction be d.

so,

[tex]d.\cos\beta=w[/tex]

[tex]d\times \cos\ 63.43=500[/tex]

[tex]d=1118.034\ ft[/tex]

Now the distance swept downward:

[tex]\Delta s=\sqrt{d^2-w^2}[/tex]

[tex]\Delta s=\sqrt{1118.034^2-500^2}[/tex]

[tex]\Delta s=1000\ ft[/tex]

2)

On swimming 37° upstream:

The velocity component of stream cancelled by the swimmer:

[tex]v'=v.\cos37[/tex]

[tex]v'=4\times \cos37[/tex]

[tex]v'=3.1945\ ft.s^{-1}[/tex]

Now the net effective speed of stream sweeping the swimmer:

[tex]v_n=v_s-v'[/tex]

[tex]v_n=8-3.1945[/tex]

[tex]v_n=4.8055\ ft.s^{-1}[/tex]

The  component of swimmer's velocity heading directly towards the opposite bank:

[tex]v'_r=v.\sin37[/tex]

[tex]v'_r=4\sin37[/tex]

[tex]v'_r=2.4073\ ft.s^{-1}[/tex]

Now the angle of the resultant velocity of the swimmer from the normal to the stream:

[tex]\tan\phi=\frac{v_n}{v'_r}[/tex]

[tex]\tan\phi=\frac{4.8055}{2.4073}[/tex]

[tex]\phi=63.39^{\circ}[/tex]

  • Now let the distance swam in this direction be d'.

[tex]d'\times \cos\phi=w[/tex]

[tex]d'=\frac{500}{\cos63.39}[/tex]

[tex]d'=1116.344\ ft[/tex]

Now the distance swept downstream:

[tex]\Delta s'=\sqrt{d'^2-w^2}[/tex]

[tex]\Delta s'=\sqrt{1116.344^2-500^2}[/tex]

[tex]\Delta s'=998.11\ ft.s^{-1}[/tex]

3)

Time taken in crossing the rive in case 1:

[tex]t=\frac{d}{v_r}[/tex]

[tex]t=\frac{1118.034}{8.9442}[/tex]

[tex]t\approx125\ s[/tex]

Time taken in crossing the rive in case 2:

[tex]t'=\frac{d'}{v'_r}[/tex]

[tex]t'=\frac{1116.344}{2.4073}[/tex]

[tex]t'\approx463.733\ s[/tex]