Respuesta :
Answer:
Yes, there is a difference between the population mean for the math scores and the population mean for the writing scores.
Test Statistics = [tex]\frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } }[/tex] follows [tex]t_n_- _1[/tex] .
Step-by-step explanation:
We are provided with the sample data showing the math and writing scores for a sample of twelve students who took the SAT ;
Let A = Math Scores ,B = Writing Scores and D = difference between both
So, [tex]\mu_A[/tex] = Population mean for the math scores
[tex]\mu_B[/tex] = Population mean for the writing scores
Let [tex]\mu_D[/tex] = Difference between the population mean for the math scores and the population mean for the writing scores.
Null Hypothesis, [tex]H_0[/tex] : [tex]\mu_A = \mu_B[/tex] or [tex]\mu_D[/tex] = 0
Alternate Hypothesis, [tex]H_1[/tex] : [tex]\mu_A \neq \mu_B[/tex] or [tex]\mu_D \neq[/tex] 0
Hence, Test Statistics used here will be;
[tex]\frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } }[/tex] follows [tex]t_n_- _1[/tex] where, Dbar = Bbar - Abar
[tex]s_D[/tex] = [tex]\sqrt{\frac{\sum D_i^{2}-n*(Dbar)^{2}}{n-1}}[/tex]
n = 12
Student Math scores (A) Writing scores (B) D = B - A
1 540 474 -66
2 432 380 -52
3 528 463 -65
4 574 612 38
5 448 420 -28
6 502 526 24
7 480 430 -50
8 499 459 -40
9 610 615 5
10 572 541 -31
11 390 335 -55
12 593 613 20
Now Dbar = Bbar - Abar = 489 - 514 = -25
Bbar = [tex]\frac{\sum B_i}{n}[/tex] = [tex]\frac{474+380+463+612+420+526+430+459+615+541+335+613}{12}[/tex] = 489
Abar = [tex]\frac{\sum A_i}{n}[/tex] = [tex]\frac{540+432+528+574+448+502+480+499+610+572+390+593}{12}[/tex] = 514
∑[tex]D_i^{2}[/tex] = 22600 and [tex]s_D[/tex] = [tex]\sqrt{\frac{\sum D_i^{2}-n*(Dbar)^{2}}{n-1}}[/tex] = [tex]\sqrt{\frac{22600 - 12*(-25)^{2} }{12-1} }[/tex] = 37.05
So, Test statistics = [tex]\frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } }[/tex] follows [tex]t_n_- _1[/tex]
= [tex]\frac{-25 - 0}{\frac{37.05}{\sqrt{12} } }[/tex] follows [tex]t_1_1[/tex] = -2.34
Now at 5% level of significance our t table is giving critical values of -2.201 and 2.201 for two tail test. Since our test statistics doesn't fall between these two values as it is less than -2.201 so we have sufficient evidence to reject null hypothesis as our test statistics fall in the rejection region .
Therefore, we conclude that there is a difference between the population mean for the math scores and the population mean for the writing scores.