Find the magnitude of WX for W(-2, 8, -3) and X(1, 4, -1)

a. [tex]\sqrt{21}[/tex]

b. [tex]21[/tex]

c. [tex]\sqrt{29}[/tex]

d. [tex]24[/tex]

Respuesta :

The magnitude of WX is  [tex]\sqrt{29}[/tex]  ⇒ c

Step-by-step explanation:

The magnitude of XY (its length) where,

  • [tex]X=(x_{1},y_{1},z_{1})[/tex]
  • [tex]Y=(x_{2},y_{2},z_{2})[/tex]

is IXYI = [tex]\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}+(z_{2}-z_{1})^{2}}[/tex]

∵ W = (-2 , 8 , -3)

∵ X = (1 , 4 , -1)

- To find the magnitude of WX use the formula above

∴ [tex]x_{1}[/tex] = -2 and [tex]x_{2}[/tex] = 1

∴ [tex]y_{1}[/tex] = 8 and [tex]y_{2}[/tex] = 4

∴ [tex]z_{1}[/tex] = -3 and [tex]z_{2][/tex] = -1

- Substitute these values in the rule above

∵ IWXI = [tex]\sqrt{(1--2)^{2}+(4-8)^{2}+(-1--3)^{2}}=\sqrt{9+16+4}[/tex]

∴ IWXI = [tex]\sqrt{29}[/tex]

The magnitude of WX is  [tex]\sqrt{29}[/tex]

Learn more:

You can learn more about the position of an object in brainly.com/question/10940255

#LearnwithBrainly

Answer:

c

Step-by-step explanation: