Respuesta :

Answer:

Part 1) [tex]f(x)=4x+3[/tex]

Part 2) [tex]f(x)=2x+1[/tex]

Part 3) [tex]f(x)=x-4[/tex]

Step-by-step explanation:

Table 1

step 1

Find the slope

take two points from the data in the table

(0,3) and (3,15)

The formula to calculate the slope between two points is equal to

[tex]m=\frac{y2-y1}{x2-x1}[/tex]

substitute

[tex]m=\frac{15-3}{3-0}[/tex]

[tex]m=\frac{12}{3}=4[/tex]

step 2

Find the linear function in slope intercept form

[tex]f(x)=mx+b[/tex]

we have

[tex]m=4\\b=3[/tex]

substitute

[tex]f(x)=4x+3[/tex]

Table 2

step 1

Find the slope

take two points from the data in the table

(2,5) and (5,11)

The formula to calculate the slope between two points is equal to

[tex]m=\frac{y2-y1}{x2-x1}[/tex]

substitute

[tex]m=\frac{11-5}{5-2}[/tex]

[tex]m=\frac{6}{3}=2[/tex]

step 2

Find the linear function in slope intercept form

[tex]f(x)=mx+b[/tex]

we have

[tex]m=2\\point\ (2,5)[/tex]

Solve for b

substitute

[tex]5=2(2)+b\\b=5-4\\b=1[/tex]

therefore

[tex]f(x)=2x+1[/tex]

Table 3

step 1

Find the slope

take two points from the data in the table

(5,1) and (8,4)

The formula to calculate the slope between two points is equal to

[tex]m=\frac{y2-y1}{x2-x1}[/tex]

substitute

[tex]m=\frac{4-1}{8-5}[/tex]

[tex]m=\frac{3}{3}=1[/tex]

step 2

Find the linear function in slope intercept form

[tex]f(x)=mx+b[/tex]

we have

[tex]m=1\\point\ (5,1)[/tex]

Solve for b

substitute

[tex]1=1(5)+b\\b=1-5\\b=-4[/tex]

therefore

[tex]f(x)=x-4[/tex]