Answer:
[tex]Photon/sec=1.07\times 10^{21}[/tex]
Explanation:
The expression for the power is:-
[tex]Power=\frac{Energy}{Time}[/tex]
Also, [tex]E=n\times \frac{h\times c}{\lambda}[/tex]
Where,
n is the number of photons
h is Plank's constant having value [tex]6.626\times 10^{-34}\ Js[/tex]
c is the speed of light having value [tex]3\times 10^8\ m/s[/tex]
[tex]\lambda[/tex] is the wavelength of the light
So,
[tex]Power=\frac{n}{Time}\times \frac{h\times c}{\lambda}[/tex]
Thus, the expression for photons per second is:-
[tex]\frac{n}{Time}=\frac{Power\times \lambda}{h\times c}[/tex]
Given that:-
Power = 32.8 Watt
[tex]\lambda=6.5\ \mu m=6.5\times 10^{-6}\ m[/tex]
So,
[tex]Photon/sec=\frac{32.8\times 6.5\times 10^{-6}}{6.626\times 10^{-34}\times 3\times 10^8}=1.07\times 10^{21}[/tex]