Answer:
the ratio of velocity is equal to 2.2
Explanation:
given,
mass of the body, m₁ = 5 Kg
mass of the another body, m₂ = 8 Kg
KE₁ = 3 KE₂
we know,
[tex]KE= \dfrac{1}{2}mv^2[/tex]
[tex]v = \sqrt{\dfrac{2KE}{m}[/tex]
now,
For first body
[tex]v_1 = \sqrt{\dfrac{2KE_1}{m_1}[/tex]
For second body
[tex]v_2 = \sqrt{\dfrac{2KE_2}{m_2}[/tex]
ration of the speed
[tex]\dfrac{v_1}{v_2}=\dfrac{\sqrt{\dfrac{2KE_1}{m_1}}}{\sqrt{\dfrac{2KE_2}{m_2}}}[/tex]
[tex]\dfrac{v_1}{v_2}=\dfrac{\sqrt{\dfrac{2\times 3 KE_2}{5}}}{\sqrt{\dfrac{2\times KE_2}{8}}}[/tex]
[tex]\dfrac{v_1}{v_2}=\sqrt{\dfrac{24}{5}}[/tex]
[tex]\dfrac{v_1}{v_2}=2.2 [/tex]
Hence, the ratio of velocity is equal to 2.2