Respuesta :

Answer:

the ratio of velocity is equal to 2.2

Explanation:

given,

mass of the body, m₁ = 5 Kg

mass of the another body, m₂ = 8 Kg

KE₁ = 3 KE₂

we know,

[tex]KE= \dfrac{1}{2}mv^2[/tex]

[tex]v = \sqrt{\dfrac{2KE}{m}[/tex]

now,

For first body

[tex]v_1 = \sqrt{\dfrac{2KE_1}{m_1}[/tex]

For second body

[tex]v_2 = \sqrt{\dfrac{2KE_2}{m_2}[/tex]

ration of the speed

[tex]\dfrac{v_1}{v_2}=\dfrac{\sqrt{\dfrac{2KE_1}{m_1}}}{\sqrt{\dfrac{2KE_2}{m_2}}}[/tex]

[tex]\dfrac{v_1}{v_2}=\dfrac{\sqrt{\dfrac{2\times 3 KE_2}{5}}}{\sqrt{\dfrac{2\times KE_2}{8}}}[/tex]

[tex]\dfrac{v_1}{v_2}=\sqrt{\dfrac{24}{5}}[/tex]

[tex]\dfrac{v_1}{v_2}=2.2 [/tex]

Hence, the ratio of velocity is equal to 2.2