Answer:
[tex]x=\frac{-45}{28}[/tex]
Step-by-step explanation:
Given equation:
[tex]\frac{-3}{4x}+\frac{1}{5}=\frac{2}{3}[/tex]
Taking the LCM on the LHS, to make the equation in terms of 'x'
After taking LCM dividing the denominator by the above equation and multiplying numerator with the remaining value to make the equation given below
[tex]\frac{(-3)(5)+1(4x)}{(4x)(5)} =\frac{2}{3}[/tex]
[tex]\frac{-15+4x}{20x}=\frac{2}{3}[/tex]
On cross multiplication
[tex](-15+4x)(3)=2(20x)\\-45+12x=40x[/tex]
Taking the terms of x to one side to find 'x'
[tex]40x-12x=-45[/tex]
[tex]28x=-45\\x=\frac{-45}{28}[/tex]