Respuesta :

Answer:

20

Step-by-step explanation:

A left Riemann sum approximates a definite integral as:

[tex]\int\limits^b_a {f(x)} \, dx \approx \sum\limits_{k=1}^{n}f(x_{k}) \Delta x \\where\ \Delta x = \frac{b-a}{n} \ and\ x_{k}=a+\Delta x \times (k-1)[/tex]

Here, the integral is ∫₀² 9ˣ dx, and the number of subintervals is n = 4.

So Δx = 2/n = 1/2, and x = 2(k−1)/n = (k−1)/2.

Plugging in:

∑₁⁴ 9^((k−1)/2) (1/2)

1/2 ∑₁⁴ 9^((k−1)/2)

1/2 (9^((1−1)/2) + 9^((2−1)/2) + 9^((3−1)/2) + 9^((4−1)/2))

1/2 (9^(0) + 9^(1/2) + 9^(1) + 9^(3/2))

1/2 (1 + 3 + 9 + 27)

20