A motorist is travelling on a curved section of highway of radius 800 m at a speed of 80 km/h. The motorist applies the brakes, causing the car to slow down at a constant rate. Knowing that after 5 seconds the speed has been reduced to 60 km/h, determine the magnitude of the car’s acceleration

(a) immediately after the brakes have been applied, and

(b) 5 seconds after the brakes have been applied.

Respuesta :

Answer:

Explanation:

Given

radius of curve [tex]r=800\ m[/tex]

initial speed [tex]u=80\ kmph\approx 22.22\ m/s[/tex]

final speed [tex]v=60\ kmph\approx 16.67\ m/s[/tex]

time taken [tex]t=5\ s[/tex]

Tangential component of acceleration is given by

[tex]a_t=\frac{dv}{dt}[/tex]

[tex]a_t=\frac{16.67-22.22}{5}[/tex]

[tex]a_t=-1.1\ m/s^2[/tex]

Normal component

[tex]a_n=\frac{v^2}{r}[/tex]

[tex]a_n=\frac{22.22^2}{800}[/tex]

[tex]a_n=0.617\ m/s^2[/tex]

Net acceleration just after brakes is applied

[tex]a_{net}=\sqrt{(a_n)^2+(a_t)^2}[/tex]

[tex]a_{net}=\sqrt{(0.617)^2+(-1.1)^2}[/tex]

[tex]a_{net}=1.261\ m/s[/tex]

(b)acceleration after 5 s

Normal acceleration [tex]a_n=\frac{16.67^2}{800}[/tex]

[tex]a_n=0.347\ m/s^2[/tex]

Tangential acceleration [tex]a_t=-1.1\ m/s^2[/tex]

Net acceleration [tex]a_{net}=\sqrt{(a_n)^2+(a_t)^2}[/tex]

[tex]a_{net}=\sqrt{1.33}[/tex]

[tex]a_{net}=1.15\ m/s^2[/tex]