Respuesta :

This is an incomplete question, here is a complete question.

Consider the second-order decomposition of nitroysl chloride:

[tex]2NOCl(g)\rightarrow 2NO(g)+Cl_2(g)[/tex]

At 450 K the rate constant is 15.4 atm⁻¹s⁻¹. How much time (in s) is needed for NOCl originally at a partial pressure of 53 torr to decay to 10.6 torr?

Answer : The time needed for NOCl is, 2.52 seconds.

Explanation :  Given,

Rate constant = [tex]15.4atm^{-1}s^{-1}[/tex]

Initial partial pressure of NOCl = 56 torr = 0.0737 atm

final partial pressure of NOCl = 14.5 torr = 0.0191 atm

The expression used for second order kinetics is:

[tex]kt=\frac{1}{[A_t]}-\frac{1}{[A_o]}[/tex]

where,

k = rate constant

t = time

[tex][A_t][/tex] = concentration at time 't'

[tex][A_o][/tex] = initial concentration

As we know that,

[tex]PV=nRT\text{ or }PV=CRT[/tex]

Thus, the expression of second order kinetics will be:

[tex]kt=RT\times \frac{1}{P_{(A_t)}}-\frac{1}{P_{(A_o)}}[/tex]

[tex]\frac{k}{RT}t=\frac{1}{P_{(A_t)}}-\frac{1}{P_{(A_o)}}[/tex]

As, [tex]k'=\frac{k}{RT}[/tex]

So, [tex]k't=\frac{1}{P_{(A_t)}}-\frac{1}{P_{(A_o)}}[/tex]         ............(1)

Now put all the given values in the above expression 1, we get:

[tex](15.4atm^{-1}s^{-1})\times t=\frac{1}{0.0191atm}-\frac{1}{0.0737atm}[/tex]

[tex]t=2.52s[/tex]

Therefore, the time needed for NOCl is, 2.52 seconds.