Suppose that a sum S0 is invested at an annual rate of return r compounded continuously. a. Find the time T required for the original sum to double in value as a function of r. b. Determine T if r = 7%. c. Find the return rate that must be achieved if the initial investment is to double in 8 years.

Respuesta :

Answer

given,

Sum = S₀

annual rate of return = r

T is the time

Ordinary differential equations is

[tex]\dfrac{dS}{dt}=rs[/tex]

[tex]\dfrac{dS}{S}=r dt[/tex]

integrating both side

[tex]\int\dfrac{dS}{S}=\int r dt[/tex]

[tex] ln (S)= rt + C[/tex]

[tex]S = e^{rt+C}[/tex]

[tex]S=e^C.e^{rt}[/tex]

e^C = S₀

[tex]S=S_0 e^{rt}[/tex]

a) time when sum is doubled

  [tex]\dfrac{S}{S_0}=2[/tex]

  [tex] 2 = e^{rT}[/tex]

  [tex]T= \dfrac{ln(2)}{r}[/tex]

b) Time T if r = 7 %

  [tex]T= \dfrac{ln(2)}{0.07}[/tex]

        T = 9.9 years.

c) return rate, r = ? T = 8 years

  [tex]r= \dfrac{ln(2)}{T}[/tex]

  [tex]r= \dfrac{ln(2)}{8}[/tex]

         r = 0.0866

        r = 8.67%