Answer:
i - component of V is zero for any value of t i-e no motion in this direction
Explanation:
Since
r= i+3[tex]t^{2}[/tex]j+t k
==> V = [tex]\frac{d r}{dt}[/tex]=[tex]\frac{d(i+3t^{2}j+kt) }{dt}[/tex]
=[tex]6tj+k[/tex]
and acceleration is given by taking derivative of velocity w.r.t t
==> a= [tex]\frac{dV}{dt}[/tex]=[tex]\frac{d(6tj+k)}{dt}[/tex]=[tex]6j[/tex]
so, V=0i+6tj+k
and
a = 0i+6j+k
i - component of V is zero for any value of t i-e no motion in this direction