Respuesta :
Answer:
We Fail to reject Null Hypothesis.
Step-by-step explanation:
We are given two dependent random samples;
Population 1 Population 2 d = Population 1 entry-Population 2 entry [tex]d^{2}[/tex]
52 61 52 - 61 = -9 81
81 71 81 - 71 = 10 100
72 82 72 - 82 = -10 100
67 62 67 - 62 = 5 25
73 79 73 - 79 = -6 36
73 77 73 - 77 = -4 16
76 71 76 - 71 = 5 25
83 85 83 - 85 = -2 4
∑[tex]d^{2}[/tex] = 387
Now, Null Hypothesis, [tex]H_0[/tex] : [tex]\mu_1 = \mu_2[/tex] or [tex]\mu_d = 0[/tex]
Alternate Hypothesis, [tex]H_1[/tex] : [tex]\mu_1 \neq \mu_2[/tex] or [tex]\mu_d \neq 0[/tex]
The test statistics for paired data is given by;
[tex]\frac{dbar - \mu_d}{\frac{s_d}{\sqrt{n} } }[/tex] follows [tex]t_n_-_1[/tex]
where, [tex]dbar[/tex] = Mean of Population 2 data - Mean of Population 1 data
Mean of Population 1 data = [tex]\frac{52+81+72+67+73+73+76+83}{8}[/tex] = 72.125
Mean of Population 2 data = [tex]\frac{61+71+82+62+79+77+71+85}{8}[/tex] = 73.5
Hence, [tex]dbar[/tex] = 73.5 - 72.125 = 1.375
[tex]s_d[/tex] = Standard Deviation of paired data = [tex]\sqrt{\frac{\sum d^{2} - n*(dbar)^{2} }{n-1} }[/tex] = [tex]\sqrt{\frac{387 - 8*(1.375)^{2} }{8-1} }[/tex]
= 7.3
n = no. of observations = 8
So, Test Statistics = [tex]\frac{1.375 - 0}{\frac{7.3}{\sqrt{8} } }[/tex] follows [tex]t_7[/tex]
= 0.533
Now, if the critical value of t at 7 degree of freedom is less than the test statistics then we will reject null hypothesis.
At 0.01 level of significance, the t table gives a critical value of 3.499. Since our test statistics is less than the critical value we will not reject null hypothesis and conclude that there is no significant difference between the two population means.